THIS IS A COLLECTION OF SAMPLE WORKSHEETS FOR THE YOUNGER STUDENTS.

SPACE EDUCATION CAN BE FILLED WITH EXCITEMENT AS EACH YEAR MANKIND "REACHES FOR THE STARS"
SPACE LAUNCH VEHICLES

ROCKETS USED TO CARRY PAYLOADS INTO SPACE ARE CALLED LAUNCH VEHICLES.

THERE ARE MANY SIZES AND DESIGNS TO MEET THE REQUIREMENTS OF THEIR PAYLOADS WHICH ARE MOST OFTEN SATELLITES BEING CARRIED INTO ORBIT.

HERE ARE SOME EXAMPLES:

- **ARIANE V12**...USED FOR MANY TYPES OF SATELLITESEUROPA (FRANCE)

- **SOYUZ**

 RUSSIA....USED LAUNCH INTERPLANETARY PROBES,
 MANNED SPACECRAFT, AND MANY OTHER TYPES OF HEAVY PAYLOADS

- **M-3S1L**...JAPAN

 USED FOR SCIENTIFIC SATELLITES AND INTERPLANETARY PROBES

- **ATLAS**

 UNITED STATES...
 COMMUNICATIONS AND OTHER SATELLITES

- **ISRAEL...SHAVIT**...

 USED FOR SMALL SATELLITES SUCH AS COMMUNICATIONS AND SCIENTIFIC RESEARCH
WHY DO ROCKETS FLY?

The amount of push that a rocket has is called thrust. The push of a balloon can be measured when the balloon is traveling on a string from floor to ceiling. Nuts, bolts, or washers can be used to measure the push of the balloon.

MATERIALS:
- Balloon
- Dixie cup
- Straw
- Nuts, bolts
- String
- Tape

Experiment 1:
Thread a piece of string through a straw. Attach the ends of the string to the ceiling and the floor. Tape an inflated balloon to the straw. Release the neck of the balloon. How fast do the balloon and straw travel up the string?
Experiment 2:
Attach 3 strings to a Dixie cup. Tape the strings to the inflated balloon so that the cup is suspended like a gondola beneath it. Release the neck of the balloon. How fast did the balloon, cup and straw travel up the string?

Experiment 3:
Add some weights (nuts, bolts) to the cup and repeat the experiment. How fast did the balloon, cup and straw travel up the string?

How much weight can the balloon lift?
MOON FACTS

* The Earth has one moon.
* The moon travels around the Earth.
* The moon is a satellite.
* The moon reflects the sun's light. It does not have its own light.
* The moon is always round. It does not change.
* The moon appears to change to us. These are lunar phases or the lunar cycle.
* The lunar cycle lasts 29 1/2 days.
* The cycle includes the crescent, half, gibbous, and full moon.
* It takes 27 days for the moon to travel around the Earth.
* The moon is about 238,856 miles away.
* Lunar gravity is too weak to hold an atmosphere.
* The daytime temperature can exceed the boiling point of water. The nighttime temperature drops to 200 degrees F below zero.
* No water or life exists on the moon.
* The moon's surface is covered with rocks and dust, flat "seas" (maria), circular craters up to 160 miles across and 5-6 miles deep, mountains over 3 miles high and riverlike rilles.
* Neil Armstrong was the first American astronaut to walk on the moon.
* Astronauts have to wear spacesuits while visiting the moon.
The Lunar Roving Vehicle, or Lunar Rover, was a space "buggy." The astronauts used it to explore their landing sites on the Moon. They gathered Moon rocks and soil, and traveled much farther than they could have on foot. During Apollo 17, the rover traveled 19.3 kilometers (12 miles) on one of its three trips.

The rover was neatly folded up inside the lunar lander during trips to the Moon, but once on the Moon’s surface, it unfolded with the help of springs. The Apollo 15, 16, and 17 missions made use of the Lunar Rover.

Because the lunar surface is rugged, the buggy was designed to climb steep slopes, to go over rocks, and to move easily over the sand-like surface. It was able to carry more than twice its own weight in passengers, scientific instruments, and soil samples.

The Marshall Space Flight Center in Huntsville, Alabama, developed the Lunar Roving Vehicle.
DOWN ON THE MOON

Your crew is lost on the moon. You have a survival kit with the items listed below. Your task is to rank those items in order of their importance in allowing your crew to locate and reach the rendezvous point with the moon base. Place the number "1" by the most important item, the number "2" by the second, and so on through number "15", the least important.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>YOUR RANK</th>
<th>GROUP RANK</th>
<th>NASA RANK</th>
<th>YOUR ERROR</th>
<th>GROUP ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>box of matches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>food concentrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 meters nylon rope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parachute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>portable heating unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.45 caliber pistol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>case dehydrated milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) 50 kg tanks of O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moon constellation map</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>self-inflating life raft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>magnetic compass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 liters of H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>self-igniting signal flares</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>first aid kit with hypodermic needles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solar powered FM transceiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculate error points as the absolute difference between the NASA ranking and the individual or group ranking.

SCORING:
0 - 26 EXCELLENT
26 - 32 GOOD
33 - 45 AVERAGE
46 - 55 FAIR
56 - 112 STILL LOST ON MOON

TOTAL ERROR
DOWN ON THE MOON
RANKINGS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>NASA RANK</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>box of matches</td>
<td>15</td>
<td>no air on the moon so matches will not light</td>
</tr>
<tr>
<td>food concentrate</td>
<td>4</td>
<td>efficient means of supplying requirements</td>
</tr>
<tr>
<td>15 meters nylon rope</td>
<td>6</td>
<td>useful in scaling cliffs or in case of injury</td>
</tr>
<tr>
<td>parachute</td>
<td>8</td>
<td>possible use as a sun shield</td>
</tr>
<tr>
<td>portable heater unit</td>
<td>13</td>
<td>not needed unless on dark side</td>
</tr>
<tr>
<td>.45 caliber pistol</td>
<td>11</td>
<td>possible means of self propulsion</td>
</tr>
<tr>
<td>case of dehydrated milk</td>
<td>12</td>
<td>bulkier duplication of energy source</td>
</tr>
<tr>
<td>(2) 50 kg tanks of O₂</td>
<td>1</td>
<td>the most pressing survival requirement</td>
</tr>
<tr>
<td>moon constellation map</td>
<td>3</td>
<td>primary means of navigation to the moon base</td>
</tr>
<tr>
<td>self-inflating life raft</td>
<td>9</td>
<td>CO₂ bottle in raft might be used as a propulsion source</td>
</tr>
<tr>
<td>magnetic compass</td>
<td>14</td>
<td>magnetic fields of moon are not polarized so compass is useless</td>
</tr>
<tr>
<td>20 liters of H₂O</td>
<td>2</td>
<td>replacement of tremendous liquid loss on lighted side of moon</td>
</tr>
<tr>
<td>self-igniting signal flares</td>
<td>10</td>
<td>distress signal when moon base is sighted</td>
</tr>
<tr>
<td>first aid kit with hypodermic needles</td>
<td>7</td>
<td>needles for medicine and vitamins fit special suit aperture</td>
</tr>
<tr>
<td>solar powered FM transceiver</td>
<td>5</td>
<td>for communication with moon base in line of sight</td>
</tr>
</tbody>
</table>
SUN and STAR FACTS

*Stars are made of gases. Stars make heat and light from the gases.
*In space, there are huge groups of stars called galaxies.
*The Milky Way is our galaxy. It has about 1 trillion stars.
*Stars are round. They look star-shaped or pointed because from the Earth the light from the stars passes through layers of moving air causing the light to "twinkle."
*There are patterns of stars in the sky called constellations.
*Our sun is a star. It is the only star close enough for us to feel its heat.
*The temperature in the middle of the sun is about 27 million degrees F.
*The sun is 93 million miles from the Earth.
*Sometimes on the face of the sun there are dark patches called sunspots. These spots are cooler.
*The sun is so big that if it were hollow it would hold 1 million Earths.
*Without the sun's light and heat, nothing could survive.
CLASSROOM ACTIVITY

WHAT'S YOUR WEIGHT?

SUBJECT: Solar System

TOPIC: Gravitational Comparisons of the Planets

DESCRIPTION: Determining Your "Weight" on Other Planets

OBJECTIVE: Students will utilize and reinforce their mathematics skills by calculating their weight on other planets in our solar system.

ACTIVITY: Using the given data, calculate your "weight" on other planets in our solar system.

Example: Mars' gravity is 0.38 times that of the earth. If you weighed 50 lbs. on the earth, how much would you weigh on Mars?

Solution: 50 lbs. \(\times 0.38 = 19 \text{ lbs.} \)

<table>
<thead>
<tr>
<th>PLANETS</th>
<th>SURFACE GRAVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.18</td>
</tr>
<tr>
<td>Venus</td>
<td>0.91</td>
</tr>
<tr>
<td>Earth</td>
<td>1.00</td>
</tr>
<tr>
<td>Moon</td>
<td>0.16</td>
</tr>
<tr>
<td>Mars</td>
<td>0.38</td>
</tr>
<tr>
<td>*Jupiter</td>
<td>2.34</td>
</tr>
<tr>
<td>*Saturn</td>
<td>0.93</td>
</tr>
<tr>
<td>*Uranus</td>
<td>0.85</td>
</tr>
<tr>
<td>*Neptune</td>
<td>1.14</td>
</tr>
<tr>
<td>Pluto</td>
<td>0.04</td>
</tr>
</tbody>
</table>

(* at cloud tops)

SUGGESTIONS:

a. List the planets in order of least to greatest gravity.

b. Redesign a bathroom scale to measure your weight on the other planets.

c. Discuss other comparisons of the planets:
HERE ARE SOME PROJECTS TO HELP WITH YOUR SPACE ORIENTATION

1. You may take some of your own possessions on your ten-day trip aboard the shuttle. Everything must fit in a space the size of a shoe box. What would you take, and why?

2. To prepare for your upcoming space flight, you must do the following exercises each day:
 - 7 chin ups
 - 5 sit ups
 - 4 laps around the track
 - 8 push ups
 - 9 jumping jacks
 How many of each would you do in one week (seven days)?

3. How many words can you make from the word ASTRONAUT? (They must have at least three letters or more.)

4. Design a patch for your mission.

5. Using the nine planets in our solar system:
 a. write the names in order, starting with the one closest to the sun
 b. write the names in alphabetical order

6. Your family is going to live on a space station for one year. You will have a room of your own, but space is at a premium. Design your seven foot by six foot room. Be sure to label everything!

7. You will be spending two days with three men who accomplished Space Firsts:
 (the first to step on the moon)
 (the first astronaut)
 (the first to orbit the earth)
 List the questions that you would want to discuss with these men.

8. Draw a picture of your favorite alien. Write a page about a day in his / her / its life.