Interim report on noise in F2C, October 2010,
Second version, including additions April 12th 2011
Rob Metkemeijer

1. Introduction.
At the 2010 CIAM plenary it was decided that in 2010 a strategy for noise control in F2C team race will be
prepared, aiming for an approximate maximum noise level of 96 dB(A) @ 3 meters.
At the WC in Hungary a workshop on the subject was held by Bengt Olof Samuelsson where the two main
options for noise reduction were identified:
1. Additions to the current technical specifications of engines, props, fuels or others. These could be
measures that relate directly to noise emission e.g. reduced exhaust timing or addition of technically
defined silencers (like now in F2D). Additional to this indirect measures are possible, that could lead to
reduction of rpm and noise , like minimum size props, air intake limitation, standard fuel and tank size
reduction. In this case no noise limit as such is necessary; the technical specification is supposed to lead
approximately to the 96 dB(A)@3 meters goal. Model processing is done by checking the technical
specifications of engine, silencers etc. No noise measurements need to be carried out
2. Simply add a noise limit to the rules, like 96 dB(A)@ 3 meters. In this case everyone is free to create its
own technology to achieve this goal. A very accurate description of the method of noise measurement is
necessary , because a too high noise level will lead to disqualification (from a race or from the
competition) . The method of measurement should give the highest reproducibility possible.

The participants of this meeting showed no clear majority for one of the options, both have their advantages and
drawbacks. Many people have a (financial) problem when a rule change would imply new engines or new
cylinders.

This small report gives information of steps made to prepare a strategy to reach the goal
It contains the following steps:
• Measurement of current noise levels, so the necessary reduction figure can be determined
• Proposal for a simple way of measurement, since it turns out that ground running measurements at 3
meters distance don’t give what we want.
• suggestions and possible designs for silencers that could suit team race diesels.
• a direction for additional technical specifications in case of an open exhaust approach.

On April 11th a session was held in Piennes Landres where Pascal and Roland Surugue used an F2C model of
recent technology, capable of 3.10 - 3.12 times to test the feasibility and acoustic effects of the silencer design as
presented in this report.
In this same session an electrically driven F2C model was used to do acoustic measurements of the propeller
noise of an F2C model in order to establish the lower limit of noise emission by exhaust noise reduction. This
experiment is reported in Annex 1 of this report.
At the EC 2011 in Czestochowa Poland a demonstration session was held with the same Surugue model. The
results are included here earlier data were generally confirmed .

2. Current noise levels
2.1 Noise measurements of flying models at the WC in Gyula
At the 2010 WC in Gyula measurements of time averaged (equivalent) noise levels over 10 – 30 seconds were
carried out at a distance of 50 meters from the center of circles for F2A, F2C and F2D. This was extremely well
possible on this flying site because there was a lot of free space without reflecting objects available around the
circles.
It turned out that all readings were quite similar for many models, so it is sufficient to give the averages of the
readings.
Noise measurements at 50 meters distance from center of circle, L_{eq}

F2A: 82 dB(A)
F2C: 80 dB(A) 1 model flying, 85 dB(A) 3 models flying
F2D: 77 dB(A) 1 model flying, 80 dB(A) 2 models flying

All values reproduced within ±1.5 dB(A) for the F2A models I measured and within ±1 dB(A) for the F2C and F2D models I measured. This is of course for representative good models with optimal engine settings. Bad settings give lower speed and lower noise readings.

The variation between max and min value during one lap varies for the classes, for F2A it is 1 the order of ±3 dB(A) re the average value, in F2D where 2 models fly in the order of ±2 dB(A) and for F2C in the order of only ±1 dB(A), probably because most current engines have the exhaust on the inside, so the effect of shorter distance when the model is at the closest position is compensated by the shielding of the exhaust in that position.

Note. The values given here could be used for approximate calculations to larger distances, by taking a noise reduction of 6 dB per doubling of distance into account, or a 20 dB reduction when the distance is 10 times larger. So a flying F2A model gives appr. 62 dB(A) at 500 meters distance, 56 dB(A) at 1000 meters a.s.o. This is a simple approach, for more accurate calculations the effects of wind and wind direction as well as sound absorption in air need to be considered, but up to 1000 metres this approach will be within ±3 dB(A).

From these measurements it is possible to calculate back to a distance of 3 meter, assuming that the effect of reflection of the ground is similar in both situations. This is more or less true in the case that one compares a 3 meter measurement over tarmac with a 50 meter measurement over a softer soil, like grass.

The noise levels calculated back to 1 model @ 3 meters are then:

F2A: 106.5 dB(A) @ 3 meter
F2C: 104.5 dB(A) @ 3 meter
F2D: 101.5 dB(A) @ 3 meter

Note that these values imply averaging over all directions of noise radiation of the models.

The measurements on April 11th in Piennes/Landres on 2 models of the Surugue team @ 50 meters distance in a free field situation (no significant effect of reflection) gave the following results:

Model 1 airspeed 17.3 secs/10 laps 79.7 dB(A)
Model 2 airspeed 16.9 secs/10 laps 80.8 dB(A)

These values confirm the data above that were collected at the WC in Guyla within ±1 dB.

2.2 Noise measurements @ 3 meters during ground running.

This type of measurements were carried out at the flying site in Utrecht on a number of F2C models. It was clear that the type of propeller matters for this measurements, even in the case that rpm’s are similar.

There is of course also a difference between exhaust side and non exhaust side.

I give the ranges for appr. 15 measurements on 6 different models during 3 sessions.

The readings given here are for the engine running at its highest possible ground rpm (which it will normally only do for a few seconds before getting hot) with a needle setting for ground running (¾ -½ turn open from flying setting). The model was hand held at a height of 1.5 m, microphone height also 1.5 m, ground surface was asphalt.

Noise measurements F2C engines @ 3 meters distance ground running

Exhaust side: 105 – 108 dB(A)
non exhaust side: 101 – 102 dB(A)

The average difference between exhaust and non exhaust side was 6 dB(A)

The average value between exhaust and non exhaust side for these F2C engines was 104 dB(A).

2.3 Measurements in the centre of the circle.

A simple way of measuring noise levels of F2C engines could be in the centre of the flying circle, at the pilot’s position. The distance to the model is then 16 meters. The advantage of this position is obvious: the distance to the model is constant (which gives a constant reading of the noise level) and the model is in a representative

F2C noise October 2011
flying condition. It will be proposed to use this method of measurement for F2C models. Noise checks can be done easily and quickly on solo flying models.

We have done these measurements on 6 models in 2 sessions at the Utrecht site, all on models with the engine exhaust on the inside. Model flying height 2-3 meters, microphone height 1.5 meters.

Measurements F2C engines @ 16 meters distance during flight
Exhaust side: 92.5 – 94.5 dB(A)

Taking the distance ratio into account this would mean a noise level (exhaust side) of 107 – 109 dB(A) @ 3 meters. If the same ratio between exhaust side and non exhaust side applies, the noise level on the non exhaust side would be 102 – 104 dB(A) and the average over the two directions 105.5 dB(A), all calculated back to a distance of 3 meters.

Measurements on April 11th in Piennes/Landres on 2 models of the Surugue team at the pilot’s position in a free field situation (no significant effect of reflection) gave the following results:
Model 1 airspeed 17.3 secs/10 laps 93.5 dB(A)
Model 2 airspeed 16.9 secs/10 laps 95.7 dB(A)

These values confirm the data above that were collected during the sessions at the Utrecht site as mentioned above, although Model nr 2, a very competitive one, was appr. 1 dB higher than the highest measured of the Dutch teams.

Measurements during a demonstration session with the same Surugue model flown by Bengt-Olof Samuelsson at an airspeed of 17.3 - 17.5 secs/10 laps gave measured noise levels (by Rob Olijve) of 96 - 97 dB(A). The appr. 1 dB difference may be due to the fact that Piennes has grass in between the pilots circle and the landing circle; in Czestochowa this is all tarmac, causing stronger ground reflection.

2.4 Summary and discussion.
3 types of measurements on F2C models were carried out. The results reproduce quite well and the differences in noise levels between the models (with proper engine settings) are small, in the order of 2 dB.
Averaged over all directions the noise level of an F2C model in flight calculated back to 3 meters distance is 105 dB(A), the noise level at the exhaust side is 108 dB(A).

The measurement of the noise level in the centre of circle is preferred and may be chosen for, because this represents true flying conditions and a constant distance to the model, giving almost constant, reproducing readings of noise levels. These are appr. 14 dB lower than the levels at 3 meter distance. This measurement method could be developed for use in the F2C Sporting Code.

Almost all current engines have the exhaust on the inside.
If the noise level maximum of 96 dB(A) @ 3 meters would be applied for the average noise levels over all directions, and, since the level at the exhaust side is 3 dB(A) higher than that, 99 dB(A) at the exhaust side would be the limit.

This leads to a criterion of 85 dB(A) measured in the centre of the circle for engines with an open exhaust on the inside, 80 dB(A) for engines with the exhaust on the outside and 82 dB(A) for engines with a front- or rear exhaust.

In the case of application of silencers the difference between exhaust side and non exhaust side will diminish, as can be read further in this note. In that case the 96 dB(A)@ 3 meter criterion can be applied directly without giving too much consideration to the directionality of the noise source, so for engines with silencers the criterion would be 82 dB(A) in the centre of the circle (measured near the pilot’s head position).
3. Experiments with silencers on an F2C engine.

3.1 Concept and design.
Until now I have always been pessimistic about the feasibility of silencers in F2C, because the back pressure of a silencing system would give unpredictable feedback to the effective compression ratio of the engine which would make the engine unstable in its operation.

I concluded that the only way to solve this could be to separate the gas flow and back pressure from the acoustic performance.

For this purpose a “neutral” mini pipe was designed for suitable gas flow, with resp. 2 and 3 resonant side chambers. “Neutral” would mean here that the sucking effect of the mini pipe is compensated by flow resistance by dimensioning the mini pipe quite long with a relatively small cross section, using the resonant side chambers to “smooth out” the reflected (negative) wave.

The mini pipe is based on a constant exhaust cross section of 60 mm², which is already in the rules for the exhaust opening area, equivalent to a diameter of 8.7 mm.(in fact I used an internal diameter of 8.5 mm) and a total effective length, incl. manifold of 125 mm. The total length of the silencer chambers is 90 mm.

The length is critical here, because we have to stay in between a too strong mini pipe effect (a too short pipe that sucks the gases strongly out of the exhaust) and tuned length effects, that may occur with a longer pipe.

For this 125 mm length the negative pulse (smoothed by the side-resonant chambers and the relatively small diameter of the inner pipe) comes back to the engine between 70 and 100 degrees of crankshaft rotation (for exhaust gas temperatures between 200 and 300°C and rpm’s between 25000 and 30000) after the pulse is released, where it acts to compensate for the flow resistance of the pipe, to attain effectively an approximate zero back pressure to the exhaust in the optimal case.

Two silencers were designed and made of the multi chamber side resonant type, a two and a three chamber type. From earlier acoustic analysis it appeared that the frequency bands that need most reduction are between 1500 and 5000 Hz.

The first silencer had two chambers of resp. 1800 and 3800 Hz, resonance frequencies, the second one had three chambers tuned at resp. 1900, 3000 and 4100 Hz, see photo’s and sketches.

![fig.1 Sketch of the 3 chamber side resonant silencer.](image)

I is length chamber, id is internal diameter chamber, nh is number of holes, fr is resonance frequency assuming a gas temperature in the chambers of 150°C.

A two chamber silencer was also built. It had identical dimensions for the inner and outer pipe and total length. The characteristics of the chambers are:
chamber 1: l = 50 mm, nh = 8, fr = 1900 Hz
chamber 2: l = 35 mm, nh = 20, fr = 3800 Hz

F2C noise October 2011
2 chamber silencer in parts

3 chamber silencer in parts

Manifold to Profi TR engine, effective length 23 mm, exhaust section area 60 mm² constant.

Engine with silencer
3.2 Tests in the model.

3.2.1. Noise measurements

The first tests were carried out on a Profi TR engine and model, propeller 156 mm diameter. A manifold was made to direct the exhaust gases to the rear side and the silencer was attached to the manifold by an O-ring, see photo’s.

Noise measurement results for this specific engine were the following:

<table>
<thead>
<tr>
<th>Utrecht, October 15th 2010</th>
<th>centre of circle, 16 meters distance</th>
<th>ground running, 3 meters distance, exhaust side</th>
<th>ground running, 3 meters distance, non exhaust side</th>
</tr>
</thead>
<tbody>
<tr>
<td>open exhaust</td>
<td>94 dB(A)</td>
<td>107 dB(A)</td>
<td>101 dB(A)</td>
</tr>
<tr>
<td>2 chamber silencer</td>
<td>82 dB(A)</td>
<td>100 dB(A)</td>
<td>99 dB(A)</td>
</tr>
<tr>
<td>3 chamber silencer</td>
<td>80 dB(A)</td>
<td>99 dB(A)</td>
<td>98 dB(A)</td>
</tr>
</tbody>
</table>

Measurements with Surugue models Piennes April 11th 2011 and Czestochowa July 29th 2011

<table>
<thead>
<tr>
<th>Piennes April 11th 2011</th>
<th>center of circle, 16 m distance (20 seconds average)</th>
<th>50 m distance, free field (20 seconds average)</th>
<th>airspeed</th>
</tr>
</thead>
<tbody>
<tr>
<td>model 1 open exhaust</td>
<td>93.6 dB(A)</td>
<td>79.7 dB(A)</td>
<td>17.3 secs/10 laps</td>
</tr>
<tr>
<td>model 1 with deflector</td>
<td>94.5 dB(A)</td>
<td>79.7 dB(A)</td>
<td>17.3 secs/10 laps</td>
</tr>
<tr>
<td>model 1 with only manifold for silencer (but no silencer)</td>
<td>89.5 dB(A)</td>
<td>78.5 dB(A)</td>
<td>17.3 secs/10 laps</td>
</tr>
<tr>
<td>model 1 with 3 chamber silencer</td>
<td>82.1 dB(A)</td>
<td>71.7 dB(A)</td>
<td>18.4 secs/10 laps</td>
</tr>
<tr>
<td>model 2 incl. deflector</td>
<td>95.7 dB(A)</td>
<td>80.8 dB(A)</td>
<td>16.9 secs/10 laps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Czestochowa July 29th 2011</th>
<th>model 1 with deflector</th>
<th>96 - 97 dB(A)</th>
<th>-</th>
<th>17.3 secs/10 laps</th>
</tr>
</thead>
<tbody>
<tr>
<td>model 1 with 3 chamber silencer</td>
<td>82 dB(A)</td>
<td>-</td>
<td>18.1 secs/10 laps</td>
<td></td>
</tr>
</tbody>
</table>

F2C noise October 2011
The conclusions of the acoustic measurements are the following:

- In flying condition (measured in the centre of circle) the noise reduction was 12 dB(A) for the 2 chamber silencer and 14 dB(A) for the 3 chamber silencer. The criterion given above (82 dB(A) in centre of circle, equivalent to 96 dB(A) @ 3 meter) is met. Propeller noise can clearly be distinguished with the silencer fitted. A next step in noise reduction would make it necessary to affect the propeller blade loading and/or rpm. The measurements with the Surugue model gave appr. 12 dB(A) reduction from the 3 chamber silencer in the center of circle and 8 dB(A) at 50 meter distance. This difference can be explained by the directional characteristics of the engine plus propeller. Calculated back to the 3 meter reference distance the center of circle measurement gives 96.1 dB(A) @ 3 meter (in the direction of the circle center) and the 50 meter distance measurement gives 96.5 dB(A) @ 3 meter averaged over all directions. The criterion of 96 dB(A) @ 3m is closely met.

- In ground running the noise reduction by the silencer is limited to 7 - 8 dB(A) on the exhaust side. It is quite clear that propeller noise in this case (with the propeller running in very inefficiently and therefore noisy) limits the noise levels. Exhaust side and non exhaust side give the same readings which suggests that in this case the exhaust noise has only a small contribution to the total noise. In flight the propeller noise turns out to be substantially less than in ground running. 96 dB(A) @ 3 meter during ground running is therefore not achievable with current props and rpm’s; but it is achievable in flight. This is another argument that noise measurements during ground running are not effective for our goal.

3.2.2 Power, airspeed, handling.

For the two models there was a reduction of airspeed of 0.8 – 1.5 second/10 laps. A rough calculation of the extra aerodynamic drag due to extra frontal area of the fuselage (from 39 to 45 cm2) and a less good aerodynamic shape, shows that the addition of this outboard silencer would give a speed reduction of appr. 0.8 seconds/10 laps.

For the Metkemeijer Profi model and silencer the net effect can be estimated in the order of 0.5 - 0.7 seconds /10 laps. This compares well with the measured reduction of rpm of appr. 2 %. The number of laps was appr. 3 more. Both effects suggest that effectively there was a small positive back pressure to the exhaust. The total effect on the running of the engine was very similar to a certain venturi size reduction.

In the case of the Surugue model the net speed reduction, corrected for the extra aerodynamic drag was 0 - 0.3 secs/10 laps and the range was appr. 1 lap less. This may be due to a slightly different design of the silencer from the first experiments: total length of silencer 80 mm instead of 90 mm, internal tube diameter 8.7 instead of 8.5 mm.

The conclusion in the case of the Surugue model is that effectively there seems to be a small negative back pressure. The compression setting had to be a little higher, the needle had to be closed 2 clicks to get back the lap range.

The most positive observation of the exercise was however that the handling of both engines was very good, actually the Metkemeijer Profi engine was easier to handle with the silencer than without it. The effects of needle and compression adjustments were very predictable and regular. Compression setting hardly changed after adding the silencer and starting was normal. It was clear that the operating temperature of the engine was not significantly affected by the silencer.

The experiences of Roland and Pascal Surugue were given by them as follows:

Pascal (pilot):

“From a piloting point of view, the addition of the 3 chamber silencer did not significantly change the plane’s capabilities; same flight stability, control sensitivity, take off and landing characteristics were observed with or without the silencer”.

Roland (mechanic):

“Manifold + Silencer: just a shade under 36g; Engine: standard Yugov, Prop 152mm, the smallest diameter we can use, no cheat with oversize prop…to keep sound level lower…

Model modification can be done in two to three evenings by a good modeler.
Flying Temp 22 to 23°, humidity 25 to 30%, and almost no wind = perfect conditions to perform tests.

Engine setting was first achieved with the usual model-engine-exhaust cap
Range 34+ and speed with a flyable setting :17.3(capable of 3up, not a “speed” setting) noise measurements were achieved as shown in this report, then the complete muffler was adapted.
I had little to do to achieve the same raceable setting, with results of 18.3 to 18.5 and range 33. There was just to recom base by 30 to 40°. To regain the range I then had to close the needle by 2 clicks.
Running stability is equal to what we achieve normally, with a slight holding back all the way (à la Metkemeijer…), plus a 5 laps stronger holding back from 20 to 25 laps, the engine does recover the proper easy sound during 25 to 34.
The starting is more critical: no breathing of the exhaust, results in a “floated” feeling, and start goes from one flick to 4 or 5.
I can imagine that with further tests , by precisely adjusting the prime we should be able to improve that aspect”.

4. Solutions with open exhaust.

From acoustic measurements appr. 30 years ago it turns out that an approximate noise level of 96 dB(A)@3 meters (exhaust side) with an open exhaust may be achieved by limiting exhaust timing to appr. 120 degrees and a minimum size propeller e.g. 175 mm diameter, 8 mm blade width at 85 mm diameter, 3.5 mm venturi diameter.
Since it is not possible to do such an experiment with the nowadays engines due to the way they are built, the data are derived from some acoustic work done in the early 80’s with Nelson and FMV engines.
For experiments with current technology engines new cylinders need to be developed with low exhaust timings. Who will do it?

5 Conclusions and recommendations:

1. Rewrite the 96 dB(A)@ 3meters to 82 dB(A) in the center of the circle , e.g. 20cm from the right side of the pilots head. Measurements can be taken during solo practice flying.
2. Silencers on F2C engines turn out to be feasible on existing engines. Use 2011 to develop an optimal standard silencer, possibly based on the findings reported here. The advantage of a standard homologated device is that probably one or more of the engine manufacturers will make them in sufficient numbers to make them available for everyone.
3. A second way is testing (during processing) home made silencers on the electro acoustic tester from F3D, the requirement of a silencer on this system of measurement will be a 16 dB(A) reduction figure relative to the open outlet of the acoustic driver. See CIAM F3D site. Comment Roland Surugue: “Rob showed us how to use this equipment, and it’s definitely the simplest way to go in my point of view: as competitor or organizer. It’s easy and repeatable”.
4. For open exhaust solutions work from the engine manufacturers is urgently necessary, new cylinders with lower exhausts have to be made. Testing with new, bigger props and possibly smaller air intakes will be necessary to be able to make a formulation of a new noise rule.

I expect that in the case a silencer rule is accepted, there will be some development in engines, firstly to add simple lugs to easily mount the silencers, secondly on a change of direction of the exhaust (45 or 90 degrees backwards) to make better aerodynamics for the model with silencer possible.

Rob Metkemeijer
October 15th 2010 + April 13, 2011

Comment Roland Surugue: “The advantage of this approach : most of today’s equipment may be recycled with the addition of the “proper” design muffler. Engines can be updated by changing the crankcase for a rear exhaust type, with the same other parts.
Complete new rear exhaust engines may need 2 years to appear on the market ?”

F2C noise October 2011
Annex 1: measurements of propeller noise.

An electrically drive F2C model was built to make measurement of propeller noise possible. The engine power and rpm is controlled by a simple RC 2.4 GHz system. Power is sufficient to make airspeeds to 16 secs/10 laps possible. Battery is on board. The total weight of the model is 880 grams. See photo. The measurement was made in the session in Piennes April 11th 2011.

Due to line break in lap 7 of the first flight that was used for a noise measurement only one measurement of 78.2 dB(A), (measuring time 8 seconds) in the center of the circle at an airspeed of 17.7/10 laps. The sound character is very different because due to the 2 blade propeller the fundamental frequency is twice the fundamental frequency of the rpm.

Calculated back to a distance of 3 meters this means that the contribution of propeller noise is 92.7 dB(A)@ 3 meter.

In the case that the measured noise level in the center of the circle with the silencer was 82 dB(A), and assuming a contribution of propeller noise of 78.2 dB(A) , it can be calculated that the contribution of the engine with silencer was 79.6 dB(A). (Decibels add logarithmic), so the effect of the silencer to the engine noise was 14 dB(A).