FAI CIMP

Ballooning and Human Factors

> D-OEE?

Thtroduction

Scripted by Klaus Hartmann, GE

Balloon Pilot since 24 years, born in Berlin, retired Engineer. DFSV. Instructor, BFU (Accident Investigation), HP\&L Work-Group, Examiner, Safety Administrator, Trains the Trainers and the Instructors,

Human Factors, Stresses in Ballooning

1. Technical details of balloons and it's operational procedured and associated problems.
2. Physiological / psychological demands in Ballooning.
3. Accident causes in Balloon Operations.

All kinds of Balloons

Special Shapes!

Upper outlet:

- can be opened or closed anytime
- to control the lift
- to be able to sink or to start climbing again.

Two independent burners: (each ~ 4000 hp)

- Each burner is supported by two Gas Bottles (Propane), each $\mathbf{2 0 - 3 0 ~ k g . ~}$

- Passenger compartment:
- a Basket, with it's high flexibility.

Combined Instruments:

-Altitude
-Vertical Velocity Indicator (VVI) and a
-Temperature Gauge (balloon temperature!)

An Aviation Radio is a minimal setup.

If needed a Transponder is used.

There are

 Baskets up to 30 People

Before Hot Air is used:
Filling starts with "Cold Air" by an inflator fan

Heating up the Air with the "Burner".

Balloon Specialities

- Hold the Altitude = Loss of Heat, Compensation through Heating Up! (Initiate the Burner for 3 sec, every $20-30 \mathrm{sec}$)
- No Wind to experience in the Balloon, as it travels with the speed of the wind.
- Slow Reaction: First effect after heating up after about ~ 8 sec
- Basically NO G-Forces, no ‘Air-Holes‘

Metereology - "wise" The Balloon is the most sensible AC

- The ONLY steering imputs possible is by changing the

Because: The wind has as a rule another direction in different altitudes.

- The only Steering Option is taken away, if Updrafts and Thermals are present.
- Therefore Ballooning ONLY takes place about
- $2 \underline{1 ⁄ 2}$ hours before SUNRISE
- respectivly 2 hours before SUNSET
- The Landing Place is basically not known!

Masses of a Balloon:

Basket, Burners, Envelope, 4 Gas-Bottles, Equipment, 4 People $\sim 750 \mathrm{Kg}$
$3400 \mathrm{~m}^{3}$ Air ~ 3400 kg

Masses on the Move>4t

Electrical Mast with 110kV Wires.

The Balloon is not easy to decelerate!

You land WITH the Wind-Speed!

Big Ballon - Big Car

Hot AIR-Balloon Operation :

Limitations:

- Temperatures in Balloon: $110^{\circ} \mathrm{C}-130^{\circ} \mathrm{C}$ (individual makes)
-Wind Speed on Ground: < 12 kt / 20 km/h
- Masses (Minimum Weight required)

Other Ops Issues:

- NO Altitude Limitations and Restrictions!
- The Basket is always "below" (NO Acrobatics!)
- There is NO "Front" or "Rear"
- Basically NO SEATS, NO Safety Belts (only in exception)
- Practically NO technical Failures or Accidents.

Physiological / Psychological Demands Ballooning

Physiological Aspects:

-A typical Hot Air-Balloon Ride -around 500m GND
-seldom longer than 2 hours
-Not enough time for big physiological changes
-Pilot in a "Standing Position" in Open Space
-NO Cabin: Heat / Cold, Noise of Burner, Exhaust Fumes / Residuals (but no wind!)

Gas-Ballooning lasts much longer!

In Competitions (up to 4 days) 2 Pilots ride in a 1,2 m² Basket with seating and sleeping options.

-Typical TIME Shedule in Summer- for Ballooning!-

21:30 SS after Landing

Balloon Logistics, Drive Back, short Landing Party, Documentation, Filling of Gas bottles

0:00-go to Sleep!

3:30 Get Up, Weather Briefing and Considerations/ Decision, inform Crew and Passengers (Wake them Up!), Shower (or not), Breakfast (or not), Navigational-Preparation, Prepare TO-Field, Loading of Equipment, Trailer, get Crew and Passengers from home, Drive to the TO Place, Crew Briefing, Get Balloon ready for Ride

5:30 SR Take Off

-Only 3:30 h Sleep, (what about the Alcohol?)
-Max. 7h from Landing Party to next Take Off!

ALTITUDE:

It is possible to get up to very high altitudes.
-Oxygen is Required!

HEARING PROBLEMS:

-The Burner Noises are relatively loud!
-The Inflator fan for filling the Balloon with cold Air.
-HEARING PROTECTION required (No Headsets!)

VISION:

Only at low altitude ground-details can be seen.
For LANDING you have to see details (fences, wires)
Eye Glasses have to be perfect! -
The near vision has to be in the upper part,
-distant vision in lower part of the glasses!

Vision Problems. Looking Up or Down!
The view upwards is covered by the envelope. Riding in a PULK: Must be achieved by looking downwards. "activelv runnina"!

No typical Aviation Problems:

Pilot :

NO optical illusions on runways,
NO Flicker-Vertigo,
NO Accelerations (G-Forces),
NO Vertigo
etc.

Passengers:

Seldom occuring
Fears, Altitude Fears (Acrophobia), Hyperventilation, Vertigo
Alcohol, Drugs, Smoking

Hard Physical Work after Landing!

Psychological Factors:

Permanent Decision Making

For Example:

Searching for a Landing Site: Vegetation, Obstacles, Fences, Electrical Wires, Orographia, Wind near ground, Animals / Horses / Birds (!), Sheds, Options for Transport, sudden direction changes,

Psychological Pressures from the outside : Expectations from Sponsors, Companies, paying Passengers,

Selfinduced Pressure in Competitions / Flight, when others start preparing for Take Off (Fan On-Syndrome).

Economical Problems if a Ride gets cancelled
Peer Pressure, unexpected critical Weather Changes
Time Pressures, i.e. Updrafts begin early!

Accidents in ballooning :
-Lack of Standard Operational Procedures (SOP)
-Lack of good Training Books !
-Chain of Failures lead to Accidents
-Most accident happen on landing, approach to land!
-There is no definite position for passengers in the basket during landing.
-Collision with equipment and people.

Fast Landings: -- Main Injuries: Leg and Feet-Fractures!

Reasons for Injuries

Reasons for Injuries

- Upright Position
- Bent Joints
- Interaction with Basket
- Interaction with Gas Equipm.
- Interaction with other Equipm.
- Interaction with Passengers 33\%

Other Accidents:

Man over Board: often the pilot himself
Late identification of obstructed sites

Landing Accidents:

- bad single decision
- wrong decision chain
- deficient preparation
- any pressure
- pendulum after touch down
- fast landings are demanding /cannot be trained !

Other:

-Dealing with hot and cold parts
-Burning flame Propane $1200-1600^{\circ} \mathrm{C}$
-Propane Fire
-Liquid Propane $\left(-42^{\circ} \mathrm{C}\right)$ in free Atmosphere, or on skin
-Inadequate Emergency Procedures
(at least we cannot forget "our under-carriage"!)

Small Balloon -- Small Car.

Conclusion :

Only a few Accidents through technical defects!
>>> Human Factors !
No Accidents through Medical Problems.
Chain of failures:

- Wrong Decision-Making (WEATHER)
- Education, Training Deficits!
- Failing to respond in time,
- False Procedures !
- Deficient exercise! etc.

Try to understand this better!

Comments?

Questions?

