Supplementary Explanations to the

F3 RC Aerobatic Aircraft Manoeuvre Execution Guide

 2024 EditionFAI Sporting Code Section 4 - Aeromodelling Volume F3 Radio Control Aerobatics, Annex 5B

The purpose of the

Manoeuvre Execution Guide

 is to give
accurate guidelines

for the proper execution of aerobatic manoeuvres
to both judges and competitors

The flight path of a model aircraft is used to judge the

shape of all manoeuvres

Every manoeuvre must be entered and exited with a
straight level upright or inverted flight of recognisable length

Centre manoeuvres start and finish on the same heading, while turn-around manoeuvres finish on a track 180 degrees to entry.
When appropriate, entry and exit of centre manoeuvres must be at the same altitude, unless specified otherwise.

Positioning adjustments in altitude are allowed in turn-around manoeuvres.

Principles

THE PRINCIPLES of flying and judging the performance of a competitor in an RC Aerobatic competition is based on the
Perfection with which the competitor's aircraft executes the aerobatic manoeuvre as described in Annex 5A
All manoeuvres should be executed with:

(from the judges' position view)

GENERAL CRITERIA FOR DOWNGRADING MANOEUVRES

"Criteria...are standards by which something can be judged"

1. WHAT WAS THE DEFECT, or mistake?

? Over, or under-rolling (or spin, or snap)
? Poor shape or geometry
? Rolls not on middle of lines
? Absence of lines
? Entry, exit poor
? Wrong angles
? Misrelation between line lengths
? Different roll rates
? Etc.

2. HOW SERIOUS was the defect, or mistake?

? Was it big (major)?
? Or was it small (minor)?
3. HOW OFTEN did you see the same defect, or mistake in a particular manoeuvre?

How many defects were there in TOTAL?

4. Was the Flying Speed constant

 in climbing and descending parts of the manoeuvre?

5. WHAT WAS THE POSITIONING of the

 manoeuvre?
6. WHAT WAS THE SIZE of the manoeuvre?

7. Was the manoeuvre partially or completely outside of the manoeuvring zone?

100\%
 GEOMETRICAL ACCURACY

CONSTANT FLYING SPEED

$+$
CORRECT POSITIONING
ㄴ

CORRECT SIZE
=

NO DOWNGRADE
10 POINTS!

Deduct/Downgrade System

Use the deduction/downgrade system not impression!

ALWAYS START WITH PERFECT 10
 As the pilot starts!

Then

9.5...9...8.5...8...7.5...7...6.5...6...5.5...5... etc..

A mark resulting from downgrading steps must not be upgraded again in any case, ie. because the manoeuvre contained „something nice"!

QUALITIES OF A GOOD JUDGE...

CONSISTENCY JUDGING ACCURACY IMPARTIALITY

Judging ACCURACY

Downgrade by up to 1 point for a minor defect Downgrade by up to 2 points for a larger defect Downgrade by $3,4,5$, more points for major defect

Do NOT downgrade 4 points for a minor defect Do NOT downgrade 1 point for a major defect

CONSISTENCY

Minor defect on manoeuvre $3=$ score 9,5 Minor defect on manoeuvre $7=$ score 9,5 Major defect on manoeuvre $9=$ score 4 Major defect on manoeuvre $11=$ score 4 Minor defect on manoeuvre $12=$ score $6,5 \times$ Major defect on manoeuvre $15=$ score $9 x$
(Scores must be in the same range, for similar defects)

MAINTAIN YOUR STANDARD!

PILOT 1	480	-1,2	495	+8,8	47		484	+2,8	470	-11,2
PILOT 2	364	-14,8	385	+6, ${ }^{\circ}$	416	+37,	374	-4,8	355	-23,8
PILOT 3	491	-2,6	513	+19,4	486	-7,6	496	+2,4	482	- 11,6
PILOT 4	505	+9,4	502	+6:4	461	-34,6	511	+15,4	491	-4,6
PILOT 5	460	-3,0	477	+1	432	-31,0	464	+1,0	482	+19

IMPARTIALITY

A judge must not, under any circumstances, favour a competitor, or a national team, or a particular flying style, or brand of equipment, or propulsion method.

Defects by "Celebrity-Competitors" must be downgraded the same way as with "Average-Competitors"

Judges must only look at the lines of manoeuvres described in the sky.

IMPARTIALITY

Conversely, acts of negative bias towards a competitor, or a national team, or a flying style, or brand of equipment, or a propulsion method, must be viewed in a serious light, and corrective action may be necessary.

ARESTI SYSTEM

Please become familiar with Aresti symbols used in F3 Aerobatics.

Two consecutive quarter rolls

Four consecutive quarter rolls

Two consecutive one eighth rolls

Negative G snap roll on inverted flight

Two positive snap rolls in opposite directions

1 1/2 positive G snap roll

Knife-edge flight

ARESTI SYSTEM

CRITERIA FOR JUDGING INDIVIDUAL MANOEUVRES

(Method)

Wind Correction

All manoeuvres are required to be wind corrected.
The exceptions to this criterion are in the snap-rolls, stall turns, and spins, where the model aircraft is in a stalled condition.

Flight path of model aircraft must describe correct geometric shape when viewed from the judges position.

GEOMETRICAL ACCURACY OF THE MANOEUVRE

As a guide for downgrading deviations from the defined manoeuvre geometry, the manoeuvres are divided into their different components:
Lines, loops, rolls, snap-rolls, horizontal circles,
Line/loop/roll/horizontal circle combinations,
Stall turns, and spins.

1 POINT PER 15° DEVIATION

In general, lines must be judged more critically than deviations in yaw and roll.

Reason: Lines can be evaluated easier than roll and yaw.

LINES

Horizontal

LINES

5B.8.3 All aerobatic manoeuvres are entered and exited by a horizontal line of recognisable length.

When no horizontal line is flown between two manoeuvres, the justcompleted manoeuvre must be downgraded by 1 point and the upcoming manoeuvre must be downgraded by 1 point.

All lines within a manoeuvre have a start and an end which define their length. They are preceded and followed by part loops (or part circles).

The length of a line should only be graded when a manoeuvre contains more than one line with a given relationship to each other ie as in a square loop.

If there is a minor deviation in the relationship then 0.5 point is subtracted, and more points are subtracted for greater deviations.

\sum

LOOPS

Radii too tight...

...too open/loose...

Good compromise!
up to minus 1 point
Part loops must have a recognisable radius which must not be too tight (very high G-load) or too loose (a well-defined line between the part loops is not clearly recognisable). If part loops are performed too tight or too loose, up to one point must be deducted.

Rolls
 (Continous Rolls and Part-Rolls)

Rolls

(Continous Rolls and Part-Rolls)

Continous Rolls:
Part-Rolls:

Continuous rolling 360 degrees and more.
Rolling less than 360 degrees.

The roll-rate must be constant. Minor variations in roll-rate must be downgraded by 0.5 point, while more severe variations must receive a downgrade of 1 or more points. Slowing down (or speeding up) the roll-rate towards the end of a roll must be downgraded using the 1 point per 15 degree rule

ROLLS

In all manoeuvres which have more than one continuous roll, the continuous rolls must have the same roll-rate. In all manoeuvres which have more than one part-roll, the part-rolls must have the same roll rate.

Where there are continuous rolls and part-rolls within one manoeuvre, the roll-rate for the part-rolls does not necessarily have to be the same as the roll-rate for the continuous rolls.

This doesn't apply to integrated rolls and integrated part rolls because roll rate depends on the length of the flightpath in which the roll or the part roll is integrated.

ROLLS

The roll-rate of the first continuous roll or part roll of a manoeuvre does not define the roll-rate for the remaining continuous rolls or part rolls of a manoeuvre but it is a starting point. As the manoeuvre progresses, the judge will compare the roll-rate of each continuous roll or part roll that was just flown to the roll-rate of the last flown continuous roll or part roll and if there is a difference, then a downgrade will be given based on the severity of the difference. In a manoeuvre with both continuous rolls and part rolls the two types of rolls must be considered separately for roll rate deviations.

Missing or additional Part-Rolls:

 Use the 1 point per 15° rule- 1 missing $1 / 2$ roll: (180 degrees) = Zero points
- 1 missing $1 / 4$ roll : (90 degress) $=-6$ points
- 1 missing 1/8 roll : (45 degrees) = - 3 points
- the same deductions apply with additional part-rolls

SNAP ROLLS

A SNAP ROLL is basically a spin in the horizontal axis.
The model aircraft rolls rapidly, with a continuous high angle of attack (positive or negative).

The tail should describe a corkscrew path.

SNAP ROLLS

NEGATIVE SNAP ROLL
 DOWN elevator

POSITIVE SNAP ROLL $+$
 UP elevator

In the F3A schedules snap rolls may be positive or negative!

SNAP ROLLS, DOWN (and UP)

If it is not a BARREL ROLL...

...then it's probably...

A SNAP ROLL!

Torque - Rolls

The model aircraft is hovering in a vertical attitude and in a fixed position at no flying speed.

Absence of a hover must be zeroed.

Otherwise torque - rolls are judged the same way as axial rolls.

Horizontal Circles and Part Circles

Horizontal circles are performed in a horizontal plane and mostly used as centre manoeuvres. Horizontal Part Circles are mostly part of a manoeuvre.

Circles and Part Circles within a manoeuvre must have the same radius.

Each occurrence of a minor deviation in radius must be downgraded by 0.5 point, while more severe deviations may downgraded by $1,1.5,2$ or more points for each occurrence.

Horizontal Circles and Part Circles

- Constant high or low altitude
- Circular flight path maintained
- Continuous rolling, at constant rate
- Rolls positioned correctly
- Any reversals to be immediate

45° Plane Circles and 45° Plane Part Circles

45° Plane circles are performed on a 45° plane and mostly used in centre manoeuvres.

They are judged with same criteria as Horizontal Circles and Part Circles. As they are not horizontal they cannot be judged by constant altitude.

The 150 m distance requirement is waived for horizontal circles, and a downgrade should only be applied if the far side of the circle exceeds approximately 350 m . Manoeuvres performed with the far side of the circle exceeding approximately 375 m in front of the pilot must be downgraded by at least 1 point.. Manoeuvres performed with the far side of the circle exceeding approximately 400 m in front of the pilot must be downgraded more severely (in the order of 2 to 3 points).

Line/Loop/Roll/Horizontal Circle COMBINATIONS

...use 1 point/15 degree downgrade!

SINGLE

IMMELMANN

Line before $1 / 2$ roll... up to minus 2 points!

There is nothing about the length of the lines between the part loops in the Sporting Code!

Line/Loop/Roll/Horizontal Circle COMBINATIONS

Line/Loop/Roll/Horizontal Circle COMBINATIONS

Line/Loop/Roll/Horizontal Circle COMBINATIONS

LOOPS WITH INTEGRATED

STALL TURNS

Up to $1 / 2$ span radius of pivot... minus 1 point!

Roll on middle of line... no downgrade!

Up to one wing span radius... minus $2 / 3$ points!

More than $11 / 2$ span radius but less than two minus $4 / 5$ points!

No line before roll...
minus 3 points!

WIND COMPENSATION STALL TURNS

Drift caused by wind as the model slows and stops prior to, during and after the pivot must not be downgraded.

Constant Flying Speed

The model aircraft shall maintain a constant flight speed throughout the various manoeuvre components; for example, in climbing and descending sections.

For significant differences up to one point is subtracted.

LONGITUDINAL POSITIONING

Manoeuvres should be primarily performed along a line of flight approximately 150 m

Exceptions to this rule are cross-box manoeuvres, 3D - manoeuvres, or manoeuvres in a stalled condition, as well as the horizontal circle manoeuvres which, of necessity, must deviate from the 150 m distance of flight.

LONGITUDINAL POSITIONING

5B.10: "Manoeuvres on a line greater than 175 m MUST BE DOWNGRADED"
The main criterion is visibility!

LONGIDUTAL AND VERTICAL POSITIONING

Size of the Manoeuvre

The size of a manoeuvre is scored by its matching size relative to the size of manoeuvring zone and the relative size of the other manoeuvres performed throughout the schedule

For mis-matching size up to 1 point downgrade.

Proportion of the manoeuvre outside of the manoeuvring zone

No downgrade (positioning only) (Entire manoeuvre
= inside box marker)

Proportion of the manoeuvre

outside of the manoeuvring zone

No downgrade
(Entire manoeuvre = inside box marker)

How to prepare as a judge?

- Know your schedule(s)!!
- Like you would fly it yourself or even better
- Know where the options are so you won't be surprised
- Be able to read Aresti quickly as a backup reminder sheet
- Make sure you get regular breaks
- Have some protection with you:
- Sun
- Rain
- Wind
- Bring your own (good) chair, if possible.

SCORE BETWEEN 10 and 0 !

(NOT 8,5-7,5-6,5 or 6,5-6-5,5 or 6-5-4!) Use Deduct/Downgrade System!

EVERY COMPETITOR... STARTS EVERY FLIGHT...

WITH A
 PERFECT SCORE!

BE CONSISTENT!

 BE ACCURATE! BE IMPARTIAL!
DON'T DISCUSS FLIGHTS WITH FELLOW JUDGES

USE N/O (NOT OBSERVED)

Be FAIR to competitors, and yourself!

Remember

Forget WHO is flying

(friend, rival, countryman, flier from other nation)
Forget WHAT is flying
(2-stroke, 4-stroke, electric, contra-drive or monodrive)
LOOK ONLY AT LINES DESCRIBED IN THE SKY!

What is the game?

-The pilot should do as good as a job as possible to hide errors from the judges
-The judges are there to spot the errors and judge how good the flight appears to be.

Respect each other

- Pilots and judges are all human...
- Humans make errors - pilots and judges
- People who work make errors
- People who work a lot make a lot of errors
- I do not know people who don't make errors.....
- So, judges are just humans and can get it wrong or sometimes miss something.

A special thank to Bob Skinner who initiated this presentation.

© Peter Uhlig, October 2023

